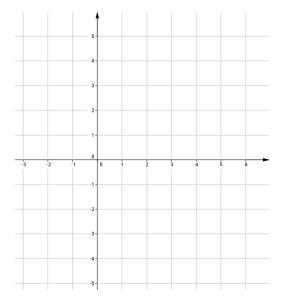

Graph the relation and connect the points. Then graph the inverse. Identify the domain and range for each relation.

Function	Domain	Range	Inverse	Is the inverse a function?
$f(x) = \{(1, 2), (2, 2), (3, 4)\}$	{ }	{ }	$f^{-1}(x) = \left\{ \qquad \right\}$	Yes No
$f(x) = \{(1, 3), (2, 5), (3, 7)\}$	{ }	{ }	$f^{-1}(x) = \left\{ \qquad \right\}$	Yes No

3) Find the inverse of the function. Also find the domain, range, and determine if the inverse is a function.

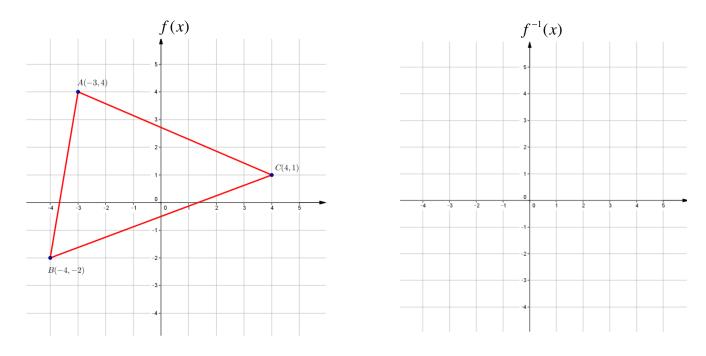
4) A function g(x) has an inverse $g^{-1}(x)$. Find the values of the function and its inverse.

x	g(x)	a) $g(2) =$	d)	$g^{-1}(1) =$
3	4	b) $g(8) =$		$g^{-1}(4) =$
2	1	y = g(0) - y	e)	g (4) –
8	7	c) $g(3) =$	f)	$g^{-1}(7) =$


Use inverse operations to write the inverse of each function.

5)
$$f(x) = 4x$$

6) $f(x) = x+3$
7) $f(x) = \frac{x}{2}+3$


8)
$$f(x) = \frac{1}{2}(3-3x)$$

9) $f(x) = \frac{3x-5}{2}$
10) $f(x) = x^2 + 3$

11)
$$f(x) = 2x^2 + 4$$

12) $f(x) = \sqrt{2x+3} - 4$
13) $f(x) = 3$

14) Graph f(x) = 3x - 4. Then write and graph the inverse.

15) Find the coordinates of the vertices of the inverse for the figure on the left.

16) A theater sells tickets for \$20. If you pay by credit card, the theater adds a service charge of \$3.00 to the entire order.

a) Write a function that gives the amount billed C to the credit card as a function of the number n of tickets purchased.

b) Write the inverse function, and use it to find the number of tickets purchased when the credit card bill is \$303.

c) Is it possible to have a total of \$213 billed to your credit card for these tickets? Explain.

Give the inverse of each linear function, where y = f(x).

17) y = mx + b18) ax + by = c19) $y - y_1 = m(x - x_1)$